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Abstract
Researchers use shared computing clusters to ask interesting
questions and wish to maximize their utilization. Currently,
optimizations focus on individual programs. We present task
fusion to automatically merge multiple tasks into a single
task. An example implementation shows fused tasks take
14–90% less time than running the tasks individually.

Categories and Subject Descriptors D.1.3 [PROGRAM-
MING TECHNIQUES]: Concurrent Programming
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1. Introduction
Big data techniques allow researchers to propose and answer
many interesting hypotheses on very large sets of data. An-
alyzing big data is accomplished using a distributed clus-
ter, which is typically shared by several users. Increasing the
utilization of such shared resources is important in order to
keep costs low and allow for more users.

Many techniques have previously been proposed to op-
timize programs that run on such clusters, however these
optimizations typically focus on single programs. Assuming
we have already used existing single-program optimization
techniques to increase utilization of shared clusters, impor-
tant research questions we wish to answer are: Can we fur-
ther increase utilization by automatically optimizing groups
of programs? If so, what pre-conditions must hold to apply
such cross-program optimizations?

In this research we answer these questions and propose
a new optimization technique called task fusion, which is
inspired by a compiler optimization called loop fusion that
increases data locality by fusing multiple loops together.
Task fusion takes multiple, individual tasks and fuses them
into a single task. This process creates a single program
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that reads the input data only once and performs multiple
computations on it, thus avoiding the overhead of reading
the data multiple times.

We prove the feasibility of our optimization by imple-
menting it in the Boa framework for software repository
mining [4, 6]. Our early evaluation shows that task fusion in
Boa provides performance benefits of up to ten times faster
execution when compared to running tasks individually.

2. Background and Related Works
Dean and Ghemawat described a MapReduce framework [3]
for distributed computations. In this framework, data is rep-
resented as key/value pairs. Each pair is given to a map (or
mapper) function, which transforms it into zero or more out-
put key/value pairs. This output is then fed into a second
user-defined function called a reducer, which aggregates all
values for a given key and produces a final result. The frame-
work automatically sorts the data between the map and re-
duce phases. Hadoop [1] is an open-source implementation
of MapReduce written in Java.

Chain folding and job merging [5] are two optimizations
for MapReduce programs. Chain folding aims to take multi-
ple map or reduce steps in a single program and fold them to-
gether into fewer steps. Job merging is when two un-related
programs that operate over the same input are manually
merged into a single program by merging the mappers and
reducers together.

FlumeJava [2] is a library for Java that abstracts the de-
tails of MapReduce from the user, instead providing a set
of high-level features such as parallel collections and func-
tions. The library generates a query plan which may include
multiple MapReduce phases. The query plan is optimized
using sibling fusion and MSCR fusion, which are similar to
chain folding and job merging, to reduce the total number of
MapReduce tasks executed. This optimization is for a single
FlumeJava program.

3. Task Fusion
The previously mentioned optimizations typically focus on
individual programs. The only optimization that looks at
multiple programs, job merging, assumes the programs are
all by the same author and requires manually merging them
together. In this section we propose a fully automated solu-
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Figure 1. Three example tasks fused into a single MapRe-
duce program, with 1 mapper and 3 reducers.

tion called task fusion that takes unrelated programs, possi-
bly from different users in a shared cluster, and fuses them
into a single task.

As an example, consider three MapReduce tasks to mine
the mean number of fields per class, mean number of classes
per project, and mean number of this statements per
method. For these tasks, the mappers iterate over compo-
nents and output values for each component. The reducers
then compute the mean value across components.

With task fusion, the three separate MapReduce tasks
are fused into a single MapReduce task (Figure 1). The
map function is a composition of the three individual task’s
map functions. There are also multiple reducers, one per
original task. One problem is ensuring the values output
from the map task are routed to the correct reducer, thus
giving the same (separate) output files as when running the
tasks individually.

To solve this problem, we rewrite the map task’s output
calls to use a composite key and provide a custom partitioner.
Partitioners take map output and routes it (based on the key)
to reducers. Our partitioner uses the composite key to ensure
the output from a map task goes to the correct reducer,
ensuring the same final three outputs.

Currently task fusion only works if all tasks share the
same input data, have no dependency conflicts, use no shared
state, and do not have side effects (such as writing to files).
Relaxing these assumptions to allow application to a wider
range of systems is currently future work.

4. Evaluation
We evaluate the effectiveness of task fusion by implement-
ing it in the Boa infrastructure [4, 6] for software repository
mining. Boa programs compile to Hadoop MapReduce pro-
grams and we modified the compiler to use task fusion when
more than one program is given as input.

We executed over 60 Boa tasks from several previous
studies. These tasks have varying complexity and their ex-
ecution takes anywhere from 25 seconds up to 24 minutes

each. We created workloads containing 21 fast tasks, 22
medium sized tasks, 18 slow tasks, and a mixed workload
of 9 tasks containing an equal number of fast, medium, and
slow tasks. The results of running these workloads are shown
in Table 1.

Sequential Task Fusion Speedup
Fast 486 45 10.80X

Medium 8,377 6,601 1.27X
Slow 16,642 14,211 1.17X

Mixed 4,687 3,255 1.44X

Table 1. Execution times (in seconds) for workloads.

The first column shows the time (in seconds) to run the
tasks in a given workload individually. The next column
shows the execution time when the tasks are fused together.
The last column shows the speedup achieved by task fusion.

In the best case, task fusion is over ten times faster than
running the tasks individually. Even in the worst case, task
fusion runs in 14% less time than individually. These early
results clearly demonstrate the potential benefit of using task
fusion in shared clusters.

5. Conclusions and Future Work
Maximizing the utilization of shared clusters is important for
researchers interested in answering questions with big data
techniques. Task fusion is an optimization that allows multi-
ple programs from different users to be fused and executed
together, requiring 14%–90% less time than executing the
tasks individually.

In the future we plan to investigate ways to relax some of
the assumptions currently required for task fusion, allowing
application of the technique to more infrastructures.
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